27 research outputs found

    Radio Irregularity Obstacles-Aware Model for Wireless Sensor Networks

    Get PDF
    Radio irregularity and signal attenuation are common phenomena in wireless sensor networks (WSNs) caused by many factors, such as the impact of environmental characteristics, the non-isotropic path losses, and especially, the obstacle on the transmission (multi) paths. The diversity of these phenomena make difficulty for accurate evaluation of WSNs’ applications which specifically require high coverage and connectivity. Thus, in this paper, we investigated the radio irregularity and signal power attenuation, primarily due to the obstacle in WSNs. With empirical data obtained from experiments using a well-known sensor node,i.e., MICAz, we found that the signal strength attenuation is different in each case according to obstacle characteristics. Then, we proposed a radio model, called Radio Irregularity Obstacle-Aware Model (RIOAM). The results obtained from real measurements are also supported with regard to those from the simulation. Our model effectiveness is justified against a radio irregularity model (RIM) – higher precision with the existence of obstacles in WSNs

    Attitudes toward teamwork: a study of Vietnamese university students

    Get PDF
    Teamwork is one of the soft skills that are very interesting in employers. A better teamwork performance of employees could bring about a significant contribution to organizational performance. However, students’ perspectives on teamwork seem to neglect over the years. The study examines attitudes on teamwork among university students in the context of a transitional economy. The study represents one of the first pieces of research employing a formal scale development to measure the attitudes of university students toward teamwork. It also addresses factors that influence Vietnamese university students’ attitudes toward teamwork. Results offer deep insights into the relationships between university student attitudes towards teamwork and its predictors. We found that Vietnamese university students have a positive attitude toward teamwork. While environment facilities, teamwork evaluation, and collectivist culture positively affect teamwork attitudes, there is no significant relationship between teamwork and free-rider problems and perceptions of workload

    An effective RGB color selection for complex 3D object structure in scene graph systems

    Get PDF
    The goal of this project is to develop a complete, fully detailed 3D interactive model of the human body and systems in the human body, and allow the user to interacts in 3D with all the elements of that system, to teach students about human anatomy. Some organs, which contain a lot of details about a particular anatomy, need to be accurately and fully described in minute detail, such as the brain, lungs, liver and heart. These organs are need have all the detailed descriptions of the medical information needed to learn how to do surgery on them, and should allow the user to add careful and precise marking to indicate the operative landmarks on the surgery location. Adding so many different items of information is challenging when the area to which the information needs to be attached is very detailed and overlaps with all kinds of other medical information related to the area. Existing methods to tag areas was not allowing us sufficient locations to attach the information to. Our solution combines a variety of tagging methods, which use the marking method by selecting the RGB color area that is drawn in the texture, on the complex 3D object structure. Then, it relies on those RGB color codes to tag IDs and create relational tables that store the related information about the specific areas of the anatomy. With this method of marking, it is possible to use the entire set of color values (R, G, B) to identify a set of anatomic regions, and this also makes it possible to define multiple overlapping regions

    Sound Classification Using Convolutional Neural Network and Tensor Deep Stacking Network

    Get PDF
    In every aspect of human life, sound plays an important role. From personal security to critical surveillance, sound is a key element to develop the automated systems for these fields. Few systems are already in the market, but their efficiency is a point of concern for their implementation in real-life scenarios. The learning capabilities of the deep learning architectures can be used to develop the sound classification systems to overcome efficiency issues of the traditional systems. Our aim, in this paper, is to use the deep learning networks for classifying the environmental sounds based on the generated spectrograms of these sounds. We used the spectrogram images of environmental sounds to train the convolutional neural network (CNN) and the tensor deep stacking network (TDSN). We used two datasets for our experiment: ESC-10 and ESC-50. Both systems were trained on these datasets, and the achieved accuracy was 77% and 49% in CNN and 56% in TDSN trained on the ESC-10. From this experiment, it is concluded that the proposed approach for sound classification using the spectrogram images of sounds can be efficiently used to develop the sound classification and recognition systems

    A Particle Swarm Optimized Learning Model of Fault Classification in Web-Apps

    Get PDF
    The term web-app defines the current dynamic pragmatics of the website, where the user has control. Finding faults in such dynamic content is challenging, as to whether the fault is exposed or not depends on its execution path. Moreover, the complexity and uniqueness of each web application make fault assessment an extremely laborious and expensive task. Also, artificial fault injection models are run in controlled and simulated environments, which may not be representative of the real-world fault data. Classifying faults can intelligently enhance the quality of the web-apps by the assessment of probable faults. In this paper, an empirical study is conducted to classify faults in bug reports of three open-source web-apps ( qaManager , bitWeaver , and WebCalendar ) and reviews of two play store web-apps ( Dineout: Reserve a Table and Wynk Music ). Five supervised learning algorithms (naive Bayesian, decision tree, support vector machines, KK -nearest neighbor, and multi-layer perceptron) have been first evaluated based on the conventional term frequency–inverse document frequency (tf-idf) feature extraction method, and subsequently, a feature selection method to improve classifier performance is proposed using particle swarm optimization (a nature-inspired, meta-heuristic algorithm). This paper is a preliminary exploratory study to build an automated tool, which can optimally categorize faults. The empirical analysis validates that the particle swarm optimization for feature selection in fault classification task outperforms the tf-idf filter-based classifiers with an average accuracy gain of about 11% and nearly 26% average feature reduction. The highest accuracy of 93.35% is shown by the decision tree after feature selection

    Brain MRI Image Classification for Cancer Detection Using Deep Wavelet Autoencoder-Based Deep Neural Network

    Get PDF
    Technology and the rapid growth in the area of brain imaging technologies have forever made for a pivotal role in analyzing and focusing the new views of brain anatomy and functions. The mechanism of image processing has widespread usage in the area of medical science for improving the early detection and treatment phases. Deep neural networks (DNN), till date, have demonstrated wonderful performance in classification and segmentation task. Carrying this idea into consideration, in this paper, a technique for image compression using a deep wavelet autoencoder (DWA), which blends the basic feature reduction property of autoencoder along with the image decomposition property of wavelet transform is proposed. The combination of both has a tremendous effect on sinking the size of the feature set for enduring further classification task by using DNN. A brain image dataset was taken and the proposed DWA-DNN image classifier was considered. The performance criterion for the DWA-DNN classifier was compared with other existing classifiers such as autoencoder-DNN or DNN, and it was noted that the proposed method outshines the existing methods

    Investigating the Importance of Psychological and Environmental Factors for Improving Learner's Performance Using Hidden Markov Model

    Get PDF
    In the proposed work, hidden Markov model (HMM) has been deployed to improve the learner's performance or grades on the basis of their psychological and environmental factors like connect/gather isolation, pleasure/comfort, depression, trust, anxiety, proper guidance, improper guidance, entertainment, and stress. The categorization of psychological and environmental factors has been done on the basis of two factors as positive and negative. The responsibility of the positive factor is to boost up learner's performance or grades, whereas negative factors reduce learning performance respectively. Finally, this paper addresses the application of HMM to determine the optimal sequence of states for different states as grades A, B, and C for different emission observations. The states identification leads to training the HMM model where optimal value of individual states computed using different observation sequences which determines the probability of state sequences. The probability of achieved optimal states is shown in different logical combinations where best state is searched among available different states using different search techniques. The computational results obtained after training are encouraging and useful

    Early centralized isolation strategy for all confirmed cases of COVID-19 remains a core intervention to disrupt the pandemic spreading significantly

    Get PDF
    Background: In response to the spread of the coronavirus disease 2019 (COVID-19), plenty of control measures were proposed. To assess the impact of current control measures on the number of new case indices 14 countries with the highest confirmed cases, highest mortality rate, and having a close relationship with the outbreak’s origin; were selected and analyzed.Methods: In the study, we analyzed the impact of five control measures, including centralized isolation of all confirmed cases, closure of schools, closure of public areas, closure of cities, and closure of borders of the 14 targeted countries according to their timing; by comparing its absolute effect average, its absolute effect cumulative, and its relative effect average.Results: Our analysis determined that early centralized isolation of all confirmed cases was represented as a core intervention in significantly disrupting the pandemic’s spread. This strategy helped in successfully controlling the early stage of the outbreak when the total number of cases were under 100, without the requirement of the closure of cities and public areas, which would impose a negative impact on the society and its economy. However, when the number of cases increased with the apparition of new clusters, coordination between centralized isolation and non-pharmaceutical interventions facilitated control of the crisis efficiently.Conclusion: Early centralized isolation of all confirmed cases should be implemented at the time of the first detected infectious case

    Safety and efficacy of fluoxetine on functional outcome after acute stroke (AFFINITY): a randomised, double-blind, placebo-controlled trial

    Get PDF
    Background Trials of fluoxetine for recovery after stroke report conflicting results. The Assessment oF FluoxetINe In sTroke recoverY (AFFINITY) trial aimed to show if daily oral fluoxetine for 6 months after stroke improves functional outcome in an ethnically diverse population. Methods AFFINITY was a randomised, parallel-group, double-blind, placebo-controlled trial done in 43 hospital stroke units in Australia (n=29), New Zealand (four), and Vietnam (ten). Eligible patients were adults (aged ≥18 years) with a clinical diagnosis of acute stroke in the previous 2–15 days, brain imaging consistent with ischaemic or haemorrhagic stroke, and a persisting neurological deficit that produced a modified Rankin Scale (mRS) score of 1 or more. Patients were randomly assigned 1:1 via a web-based system using a minimisation algorithm to once daily, oral fluoxetine 20 mg capsules or matching placebo for 6 months. Patients, carers, investigators, and outcome assessors were masked to the treatment allocation. The primary outcome was functional status, measured by the mRS, at 6 months. The primary analysis was an ordinal logistic regression of the mRS at 6 months, adjusted for minimisation variables. Primary and safety analyses were done according to the patient's treatment allocation. The trial is registered with the Australian New Zealand Clinical Trials Registry, ACTRN12611000774921. Findings Between Jan 11, 2013, and June 30, 2019, 1280 patients were recruited in Australia (n=532), New Zealand (n=42), and Vietnam (n=706), of whom 642 were randomly assigned to fluoxetine and 638 were randomly assigned to placebo. Mean duration of trial treatment was 167 days (SD 48·1). At 6 months, mRS data were available in 624 (97%) patients in the fluoxetine group and 632 (99%) in the placebo group. The distribution of mRS categories was similar in the fluoxetine and placebo groups (adjusted common odds ratio 0·94, 95% CI 0·76–1·15; p=0·53). Compared with patients in the placebo group, patients in the fluoxetine group had more falls (20 [3%] vs seven [1%]; p=0·018), bone fractures (19 [3%] vs six [1%]; p=0·014), and epileptic seizures (ten [2%] vs two [<1%]; p=0·038) at 6 months. Interpretation Oral fluoxetine 20 mg daily for 6 months after acute stroke did not improve functional outcome and increased the risk of falls, bone fractures, and epileptic seizures. These results do not support the use of fluoxetine to improve functional outcome after stroke

    Global investments in pandemic preparedness and COVID-19: development assistance and domestic spending on health between 1990 and 2026

    Get PDF
    Background The COVID-19 pandemic highlighted gaps in health surveillance systems, disease prevention, and treatment globally. Among the many factors that might have led to these gaps is the issue of the financing of national health systems, especially in low-income and middle-income countries (LMICs), as well as a robust global system for pandemic preparedness. We aimed to provide a comparative assessment of global health spending at the onset of the pandemic; characterise the amount of development assistance for pandemic preparedness and response disbursed in the first 2 years of the COVID-19 pandemic; and examine expectations for future health spending and put into context the expected need for investment in pandemic preparedness. Methods In this analysis of global health spending between 1990 and 2021, and prediction from 2021 to 2026, we estimated four sources of health spending: development assistance for health (DAH), government spending, out-of-pocket spending, and prepaid private spending across 204 countries and territories. We used the Organisation for Economic Co-operation and Development (OECD)'s Creditor Reporting System (CRS) and the WHO Global Health Expenditure Database (GHED) to estimate spending. We estimated development assistance for general health, COVID-19 response, and pandemic preparedness and response using a keyword search. Health spending estimates were combined with estimates of resources needed for pandemic prevention and preparedness to analyse future health spending patterns, relative to need. Findings In 2019, at the onset of the COVID-19 pandemic, US9⋅2trillion(959·2 trillion (95% uncertainty interval [UI] 9·1–9·3) was spent on health worldwide. We found great disparities in the amount of resources devoted to health, with high-income countries spending 7·3 trillion (95% UI 7·2–7·4) in 2019; 293·7 times the 24⋅8billion(9524·8 billion (95% UI 24·3–25·3) spent by low-income countries in 2019. That same year, 43·1 billion in development assistance was provided to maintain or improve health. The pandemic led to an unprecedented increase in development assistance targeted towards health; in 2020 and 2021, 1⋅8billioninDAHcontributionswasprovidedtowardspandemicpreparednessinLMICs,and1·8 billion in DAH contributions was provided towards pandemic preparedness in LMICs, and 37·8 billion was provided for the health-related COVID-19 response. Although the support for pandemic preparedness is 12·2% of the recommended target by the High-Level Independent Panel (HLIP), the support provided for the health-related COVID-19 response is 252·2% of the recommended target. Additionally, projected spending estimates suggest that between 2022 and 2026, governments in 17 (95% UI 11–21) of the 137 LMICs will observe an increase in national government health spending equivalent to an addition of 1% of GDP, as recommended by the HLIP. Interpretation There was an unprecedented scale-up in DAH in 2020 and 2021. We have a unique opportunity at this time to sustain funding for crucial global health functions, including pandemic preparedness. However, historical patterns of underfunding of pandemic preparedness suggest that deliberate effort must be made to ensure funding is maintained
    corecore